2022中级会计考试时间安排,2022年中级会计证考试时间
大家好,今天小编关注到一个比较有意思的话题,就是关于2022中级会计考试时间安排的问题,于是小编就整理了4个相关介绍2022中级会...
扫一扫用手机浏览
解 无差异曲线是用来表示两种商品的不同数量的组合给消费者所带来的效用完全相同的一条曲线。无差异曲线具有四个重要特征:第一:无差异曲线是一条向右下方倾斜的曲线,其斜率为负值。
无差异曲线是一条自左上方向右下方倾斜、斜率为负的曲线。(4)无差异曲线凸向原点。这是由边际替代率递减规律所决定的。
解 无差异曲线是能够给消费者带来相同满足程度的不同数量的商品组合描绘出来的轨迹。
无差异曲线的特征:(1)同一坐标平面上可以有无数条无差异曲线。这表明在坐标图的商品空间上,消费者可以对两种任意组合商品进行效用或偏好的对比,确定它们的效用是无差异的,即可以画出无数条无差异曲线覆盖整个平面。
无差异曲线的特点有:无差异曲线是一条向右下方倾斜的线,斜率是负的,因为这条线是往下的。
1、 无差异曲线(Indifference curve) 无差异曲线是一条表示线上所有各点两种物品不同数量组合给消费者带来的满足程度相同的线。 是用来表示消费者偏好相同的两种商品的所有组合。
2、解 无差异曲线是用来表示两种商品的不同数量的组合给消费者所带来的效用完全相同的一条曲线。无差异曲线具有四个重要特征:第一:无差异曲线是一条向右下方倾斜的曲线,其斜率为负值。
3、无差异曲线是一条向右下方倾斜的曲线,其斜率为负值,它表明在收入与价格既定的条件下,为了获得同样的满足程度,增加一种商品就必须放弃减少,另一种商品,两种商品在消费者偏好不变的条件下,不能同时减少。
如果不同的无差异曲线相交,就表示相交的两条线上组合效用水平相当,也就没必要画出两条无差异曲线了。所以无差异曲线不相交。
任意两条无差异曲线不能相交,这是根据偏好的可传递性***定来判定的。如果两条无差异曲线相交,就会导致逻辑上的错误。只要消费者的偏好是可传递的,无差异曲线就不可能相交。
因为处处斜率相同,切线方向相同。有交点的话必然有不同的切线,不合。故不相交。
与“无差异曲线之间不可能相交”的道理是一样 如果一条无差异曲线出现自身相交,那么无差异曲就不是单调的了 就会出现两点:其中一个坐标是一样的,另一个坐标是有大小。
或者说它是表示能够给消费者带来相同的效用水平或满足程度的两种商品的所有组合的 任何两条无差异曲线不能相交。这是因为两条无差异曲线如果相交,就会产生矛盾。只要消费者的偏好是可传递的,无差异曲线就不可能相交。
做出图来很好解决。无差异曲线:MRS=-d1/d2(或叫德尔塔2,2是指两种商品),d1XMU1+d2XMU2=0,又在预算约束下,d1XP1+d2XP2=0,三式子联合得出。
同一坐标平面上可以有无数条无差异曲线。这表明在坐标图的商品空间上,消费者可以对两种任意组合商品进行效用或偏好的对比,确定它们的效用是无差异的,即可以画出无数条无差异曲线覆盖整个平面。
同一条无差异曲线上的不同点表示的是能给消费者带来相同效用的不同商品组合的点,无差异曲线的纵轴通常表示某种商品的数量,横轴表示另一种商品组合的数量,因此整条无差异曲线表示的是消费者偏好相同的商品组合的轨迹。
因为任一点所代表的组合给他所带来的满足都是无差异的。无差异曲线是西方经济学效用论中的一个重要概念,是消费者感受满足程度相等的商品组合点的轨迹,是消费者主观嗜好的几何表现。
1、无差异曲线是一条自左上方向右下方倾斜、斜率为负的曲线。(4)无差异曲线凸向原点。这是由边际替代率递减规律所决定的。
2、无差异曲线特征如下:第一,无差异曲线是一条向右下方倾斜的线,斜率是负的,因为这条线是往下的。表明为实现同样的满足程度,增加一种商品的消费,必须减少另一种商品的消费。
3、【无差异曲线的特征】第一,无差异曲线是一条向右下方倾斜的线,斜率是负的。表明为实现同样的满足程度,增加一种商品的消费,必须减少另一种商品的消费。
4、无差异曲线主要有斜率是负的;在同一个平面上可以有无数条无差异曲线;无差异曲线不能相交以及无差异曲线凸向原点等特征,无差异曲线的经济意义在于表示人们从商品中得到的效用程度相同。
5、解 无差异曲线是用来表示两种商品的不同数量的组合给消费者所带来的效用完全相同的一条曲线。无差异曲线具有四个重要特征:第一:无差异曲线是一条向右下方倾斜的曲线,其斜率为负值。
无差异曲线是一条表示线上所有各点两种物品不同数量组合给消费者带来的满足程度相同的线(是一种购买组合)。
无差异曲线是所有使消费者效用不变的消费组合。其斜率亦即边际替代率,表示的是为保持效用不变时,增加一单位商品X所愿意放弃的另一种商品Y。
无差异曲线(Indifference curve)是一条表示线上所有各点两种物品不同数量组合给消费者带来的满足程度相同的线。IC={(y1,y2)~(x1,x2)}。是用来表示消费者偏好相同的两种商品的所有组合。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:
本站非盈利性质,与其它任何公司或商标无任何形式关联或合作。内容来源于互联网,如有冒犯请联系我们立删邮箱:83115484#qq.com,#换成@就是邮箱